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● Quick validation of numerous but usually small changes to aircraft in order 
to accommodate a wide variety of unique science payloads
○ Addition of a pod-mounted payload; modified nose or fuselage to carry payload
○ Effect of adding NACA scoop or external pylon for gas sensing probe
○ Interaction of prop wash and ground effects on payload sampling

● Simulation of frequently-modified UAS
○ For new payload airworthiness certification
○ Pitot tube study, stability study, etc
○ Evaluate tradeoffs enabled by modularity

● Small UAS in all environments
○ In potential or actual icing-conditions
○ Icing, crosswinds, etc have outsize effect
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Earth Science Drivers for CFD Analysis



● Leverage access to unique tools in support of Airborne Science
○ Supercomputer resource allocation, straightforward request via HEC ebooks
○ Licenses to STAR-CCM+ and open source tools

● Document provisioning process and CFD setup for the next PI
● Performance of FrankenRaven and tradeoff study
● CFD on suspected pitot tube location for airspeed indication error
● Performance of dual-fuselage FrankenRaven with instrument pod
● Ice accretion CFD on three small UAS under different cloud conditions
● Validate icing CFD and wind tunnel at very low airspeeds
● Development and documentation of useful scripts and macros
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Project Goals and Outcomes



● Modularity for different airframe configurations
○ Multiple fuselage and wing modules
○ Variety of payloads and mission profiles
○ Even simple modularity creates a complex tradeoff space

● Advantages compared to non modular UAS
○ Can be reconfigured on-the-spot
○ Straightforward building and logistics
○ Simplified repairs in the field with spare modules
○ Possible to optimize the airframe around the payload

● Supports variety of ConOps (Concept of Operations)
● Small class I aircraft used to demonstrate/validate
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Project 1: CFD of Modular Small UAS



● Piecewise scalable fuselage, wing, battery,
thrust, payload, and control surfaces

● Demonstrate the feasibility of modularity
with UAS owned by ARC

● The UAS is segmented to
facilitate fitting into a backpack 

● Use as raw material for new aircraft
○ Connect wing segments with splice
○ Splice fabricated with 3D printing
○ Maximum splice count limited
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Splice

Front View

Modular UAS Concept: Fixed Wing



● Modular aircraft is a new paradigm compared to fixed-configuration aircraft 
for science-driven applications; follows CubeSat model

● Modular aircraft opens up a new tradeoff space for mission design
● Studies in 2013 in 2014 showed that one of the most powerful variables in 

the aircraft performance tradeoff space is wingspan
● Number of wings (biplane, triplane)
● Battery count (also increases reliability)
● Payload weight (and ballast if any)
● Control surfaces (size, number, moment arm)
● Propulsors (number of thrust modules)
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● Low speed operation: Mach 0.04
● FrankenRaven: Chord D = 8.0” [203 mm]
● Low Reynolds number flight conditions

○ Between 130k to 400k
○ Large effective wing surface area at low velocity
○ Viscous drag is dominant, pressure drag is less of a factor

● Multiple configurations
○ Entails multiple envelopes of performance
○ Multiple payload capabilities to study
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OEM (Span = 1.3 m) Largest Configuration (Span = 2 m)

μ = 1.822×10-5 Pas

V = 10 m/s to 30 m/s

⍴ = 1.225 kg/m3

Considerations for Small UAS Flight Analysis
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● Convert assembly CAD to OML

● STAR-CCM+
○ Utilized built-in solver and mesh tools

● Steady State Reynolds Averaged Navier-Stokes

● Spalart-Allmaras turbulence modeling
○ Low airspeed

○ Expected minimal separation

● Hemispherical domain

● Mirror symmetry about the XZ plane
○ Set up for utilizing same mesh across

wide range of velocities and AoA

○ 30 m radius,~200 chord lengths away

Outer Mold Line CAD

Workflow - FrankenRaven



● Trimmer mesh (STAR-CCM+)
○ Unstructured
○ Majority of cells are exact cubes
○ ~12 million cells to simulate FrankenRaven

● Computationally efficient to both mesh 
and solve

● Difficult to capture blended areas e.g. the 
wing-to-fuselage pylon on the small UAS
○ Numerous small radius-of-curvature features
○ Accurate modeling demands high local cell count

● Was labor-intensive to get a high fidelity mesh

9

Meshing Approach 1: Trimmer



● Polyhedral mesh (STAR-CCM+)
○ Unstructured
○ Cells are 3D polyhedrons with variable

face count and arbitrary angles
○ ~3 million cells to simulate FrankenRaven

● Computationally efficient solving
○ Similar residual quality
○ Solved in half the time compared

to trimmer
○ Smaller file size

● Lesson learned: polyhedral more 
efficient for our application
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Meshing Approach 2: Polyhedral



● Important for sweeps
○ Minimize cell count/computation
○ Large effects for large sim sweeps

● Parameters of Interest
○ Base size
○ Local cell size
○ Prism layer attributes

● Change in key parameters
○ Lift and drag
○ Residuals
○ Solver time

● Also tested at high and low AoA and airspeed for worst case scenario
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● Solve for constant given climb rate

● Optimize for maximum time on station (minimum power consumption, 

maximum efficiency, usually just above stall speed)

● Solve for a constant given cruise velocity (constant altitude) equilibrium

○ Thrust must equal drag

○ Lift greater than or equal to aircraft weight

○ Flow has not stalled yet

● Optimize for maximum distance (~ maximum velocity)

● Glide conditions (for FRRB)

● Maneuvers and landing (g-loading for FRRB)
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THIS  PRESENTATION

States to Simulate



● 5 configurations
○ Minimize cell count/computation
○ Save time for large sim sweeps

● AoA from -10 to 20
○ Similar to XFOIL and UIUC database
○ Capture zero lift condition
○ 2 degree increments

● Post-processing
○ MATLAB and Java macros for exporting
○ Linear trends for lift and drag
○ Center of pressure for stability
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AOA
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Simulation Sweeps



● Dynamic thrust used as approximation for this study
○ Used for rough thrust calcs in radio control aircraft
○ Function of pitch, RPM, and airspeed

● Equivalent drag used for power required
○ 85% efficiency

● Thrust as a function of propeller specifications, RPM, and airspeed
● Calculations done assuming no margin

○ Margin needs to be included for safety
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Thrust and Range Calculations
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Points of Equilibrium (OEM)



Configuration AOA Velocity
(m/s)

Lift
(lbf)

Payload*
(lb)

Range
(km)

Time
(min)

8.3 15 6.7 2.5 27.6 31

10.5 15 12.1 7.3 27.6 31

3.4 15 9.1 3.7 27.6 31

8.8 15 11.4 6.1
(56% margin)

27.6 31

8.0 15 14.8 7.9
(66% margin)

27.6 31
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(*For dual-fuselage configurations, indicated margins are for a 2.67 lb payload)

Payload Capabilities from Equilibrium Points
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Pitot Tube
Location

May explain autopilot issues when climbing at high AoA

Pitot Tube Turbulence



Meshing Alternative
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Structured

Unstructured

Hybrid



Meshing Alternative
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Structured Unstructured Hybrid

Low cell count High cell count Low cell count

Pre-processing is 
time consuming

Pre-processing is 
inexpensive

Pre-processing 
varies depending 

on geometry

Hexes comprise of 
quads

Tets comprised of 
tris

Compromised of 
tets, hexes, prisms, 

and pyramids

~ 1.78 million cells ~ 6.2 million cells ~ 2.8 million cells
Modified from: Tim Baker, “Mesh generation: Art or Science?”, Progress in Aerospace 

Sciences 2005



Structured Mesh
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Domain5 
points

5
points

Cell

Wing section Tailboom – partial view

• Opposite edges have to match on the domain
• Each domain is colored differently
• Main goal is to drive cell count down 
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High skewness

Structured Mesh
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Maximum included angle Minimum included angle

Structured Mesh
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• Domain on the section 
of the fuselage

• Problems in recovering 
the geometry while 
attempting to resolve 
cell skewness

Structured Mesh
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Without T-Rex

With T-Rex

• T-Rex is an anisotropic 
tetrahedral extrusion 
method developed by 
Pointwise

• It is a highly automated 
and robust technique for 
generating unstructured 
boundary layer meshes 
for complex geometries

• Helps with resolving high 
curvature surfaces 

• Reduces time in 
generating the volume 
mesh  

Hybrid Mesh
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Inadequate resolution near 
the wall

Hybrid Mesh
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Hybrid Mesh
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• Better control of cell 
size transition with the 
boundary decay 
parameter

• Increase boundary 
decay to prevent 
erratic jumps in cell 
size

• Quality cell transitions 
translates to a more 
accurate modeling of 
the flow

Hybrid Mesh
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• Volume mesh in 
the unstructured 
block

• Made up of 
tetrahedrals, 
pyramids, and 
prisms

• Generated using  
T-Rex 

Hybrid Mesh



Tetrahedral

Pyramid

Prism
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Hybrid Mesh



Future Considerations

• More equilibrium points
• Every configuration has a range of steady flight conditions
• Each range holds key information to flight capabilities

• Further stability analysis
• How wingspan affects ease of control
• Simulate lateral conditions 

• Simulate flutter and aero-elasticity
• Smaller sweep increments
• Validation

• Test steady level conditions
• Static and dynamic thrust tests

• Concept extensible to larger aircraft
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Part 3: Aircraft Icing of Low Speed Small UAS

● Test three small UAS in the Icing Research Tunnel to characterize ice accretion at 
different flight and icing conditions

● Validate LEWICE3D ice accretion research code for low speed small UAS
● Develop and investigate methodologies of quantitative comparison between 

experimental and simulation ice shape data
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Why UAS?

● Lot more interest in Arctic Regions (Climate Change, Trade Routes, Geopolitics)
● More and more common now as their operating costs are much cheaper
● Able to maneuver in more extreme environments
● Are expendable, and do not risk safety of pilots
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● 2013 - NASA SIERRA Aircraft lost engine power due to potential icing in Alaska

Motivation: SIERRA Incident
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sUAS Icing vs Large Aircraft Icing

● Icing Research Tunnel Testing at NASA Glenn since 1944
● Our test was the first time UAS was in the IRT
● Weight of ice added in proportion to weight of UAS is 

much bigger
● More drastic change in performance characteristics 
● Large aircraft fly fast enough where the aerodynamic 

forces form the shape of the ice
● Small UAS fly at a speed where gravity may have to be 

taken into account in ice formation models (not 
currently in LEWICE3D code)
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Test Articles
DataHawk

● Designed/manufactured by University 
of Colorado

● Electric Motor Flying Wing, Pusher 
Propeller

● Used by DOE at Oliktok Point, Alaska
● Collect measurements of lower 

atmospheric properties
● Looking to develop de-icing systems
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ArcticShark
● Designed/manufactured by Navmar

Applied Sciences Corporation
● Internal combustion engine, pusher 

propeller
● Weather-tolerant version of TigerShark
● Airborne atmospheric research drone to 

measure radiative, aerosol, and cloud 
properties

● Produces 4000 W, 2500 W dedicated to 
payload

Outlaw SeaHunter
● Designed/manufactured by Griffon 

Aerospace
● Platform for ISR missions, system tests, 

R&D, and payload development
● Flew in Canada successfully operating 

at 15,000 feet at -40 C in Feb 2018



Flight and Icing Cloud Conditions
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● Cruise velocities and typical climbing AoA

● Temperature: -10 C (Glaze Ice) and -20 C (Rime Ice)

● Mean Volume Diameter (MVD): 15, 25, 50 μm

● Liquid Water Content (LWC): 0.5, 1.5, 2.0 g/m^3

● Exposure time: 10 minutes

*Cloud conditions 

were chosen to 

match corner 

cases from FAA 

Appendix C Icing 

Certification 

Criteria within IRT 

operating 

envelopes

V = 35 kts V = 80 kts



LEWICE3D Overview
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● Research Code by NASA Glenn Research Center
● Simulate ice accretion on 3D aircraft surfaces (in Quasi-3D)

Inputs
● Aerodynamic 

Flow Field
● Icing cloud 

conditions

Computational Module
● Calculate approaching 

water droplet trajectories
● Calculate mass and energy 

transfer on surface
● Modeling freezing process 

in finite control volumes

Outputs
● Ice shapes at 2-D 

section planes of 
interest
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● Same best practices as Low-Reynolds Number Incompressible Flow CFD Meshing
● Unstructured tetrahedrals in fluid domain with structured quads to capture surface resolution 
● Boundary Layer Resolution
● Used NASA FUN3D Flow Solver

Meshing/CFD for Ice Accretion Simulations
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Methodology – Simulation of Ice Accretion



Methods of Quantitative Comparison
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● Used high resolution robotic arm 3D scanner to capture experimental ice shape 
● Maximum Combined Cross Sectional Area*

*For swept wings, perpendicular to LE 



Methods of Quantitative Comparison
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● Find largest horn 
perpendicular to aircraft 
surface

● Horn Location
● Horn Length
● Horn Angle 



42

● Area/Volume of Ice
● Estimated Mass*

*Previous studies have used a density of 
450 kg/m^3 to account for voids 
throughout the span

Methods of Quantitative Comparison



Tapered Wings
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● Max Combined Cross Section fails
● Chord/thickness not consistent
● Limited to comparing single cut sections

● SeaHunter and DataHawk faces this problem



ArcticShark: Glaze Ice (-10 C), AoA = 7, V = 70 kts
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MVD = 15 μm, LWC = 1.5 g/m3 MVD = 25 μm, LWC = 1.5 g/m3 MVD = 50 μm, LWC = 2.0 g/m3

Glaze Ice = Water droplets do not freeze immediately upon impact
Experimental Data                               LEWICE3D Data   



A Closer Look: Glaze Ice
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● LEWICE3D has less ice volume
(expected b/c IRT data is MCCS)

● LEWICE3D has lower horn angle
● Horn lengths are similar
● LEWICE3D has minimized icing 

on stagnation point 

Stagnation point



ArcticShark: Rime Ice (-20 C), AoA = 7, V = 70 kts
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Rime Ice = Water droplets freeze immediately upon impact  

MVD = 15 μm, LWC = 1.5 g/m3 MVD = 25 μm, LWC = 1.5 g/m3 MVD = 50 μm, LWC = 2.0 g/m3



A Closer Look: Rime Ice
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● LEWICE3D has less ice volume 
(expected b/c IRT data is MCCS)

● LEWICE3D has lower horn angle
● Horn lengths are similar
● LEWICE3D has minimized icing 

on stagnation point 

Stagnation point



Sources of Errors/Inconsistencies
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● Assumed atmospheric pressure in LEWICE3D sims, IRT static pressures vary
● Have not done mesh convergence studies with icing simulations
● Assumed universal droplet size in LEWICE3D, IRT has a drop-size distribution
● IRT is not typically calibrated to low speeds
● LEWICE3D does not use a multi-time-step approach with updated flow fields
● Max Combined Cross Section is not exactly representative of full 3D ice shape
● Flow Angularity and Wall Effects in the IRT
● Surface roughness on test article
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● Further data post-processing (average cross section, compute volume, etc)
● GLENNICE Full 3D Ice Accretion Software Release in Late 2019
● Another Icing Tunnel Test in November 2018
● Multi-rotor aircraft
● Engine-on testing
● Aerodynamic testing of ice shapes in wind tunnel
● Wind tunnel testing of de-icing strategies (thermal de-icing, icephobic materials, 

mechanical de-icing)
● Ice sensors coupled with de-icing control systems
● Actual Flight Testing in Icing Conditions

Future Research
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CFD Aerodynamic Flow Field
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● Used NASA FUN3D Unstructured Flow Solver
● LEWICE3D uses flow field to solve ice growth calculation in one time-step
● Ideally, use multiple time-steps, updating the mesh and flow field every time
● LEWICE2D does this with 2D inviscid panel method
● 3D Mesh Adaptation and RANS (Viscous) 3D Flow Solution too computationally expensive
● This feature will be implemented in next-generation LEWICE3D (GLENNICE3D)

for every timestep
calculate trajectories using flow field
calculate ice shapes
update mesh based on ice shapes
calculate flow field on new mesh

repeat



CFD WorkFlow
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